

OSTIM TECHNICAL UNIVERSITY FACULTY OF ENGINEERING

COURSE SYLLABUS FORM 2020-2021

Instructor: Dr. Güney GÜRSEL, <u>guney.gursel@ostimteknik.edu.tr</u>

CENG 101 Introduction to Computer Engineering							
Course Name	Course Code	Period	Hours	Application	Laboratory	Credit	ECTS
Introduction to Computer Engineering Concepts	CENG101	1	3	0	0	3	4

Language of Instruction	English
Course Status	Compulsory
Course Level	Bachelor
Learning and Teaching Techniques of the	Lecture, Discussion, Question Answer, Practice
Course	

Course Objective

The objective of this course is to learn about how hardware, software, and systems operate, to introduce the subjects, working areas, terminology and concepts of Computer Engineering; to inform about the working principles of computers, binary numbers, Software types, Hardware techniques; to arouse consciousness about network systems such as the internet and security issues.

Learning Outcomes

- 1. Represent and manipulate information in binary form
- 2. Design, physically implement, and debug basic combinational and sequential logic circuits
- 3. Write structural and data flow models of logic circuits in a hardware description language
- 4. Implement designs represented in a register transfer language
- 5. Discuss the organization and operation of a basic digital computer
- 6. Discuss the execution of machine language computer programs by a basic computer
- Write elementary assembly language programs and discuss their translation to machine language programs
- 8. Write reports on hardware and software design projects

Course Outline

This course provides the basic concepts of computer design and operation, both hardware and software, to new computer and electrical engineering students. Students need the background on computer engineering provided by this class before advancing to more complex topics in computer engineering.

Weekly Topics and Releated Preparation Studies					
Weeks	Topics	Preparation Studies			
1	Introduction and Basic Concept	Chapter 1			
2	The History of Computers	Chapter 2			
3	Software and Hardware Concepts	Chapter 2			
4	Properties of Pure Substances	Chapter 3			
5	Binary Numbers and General Computer Architecture	Chapter 4			
6	Operating System Concepts	Chapter 4			
7	Internet and Computer Networks	Chapter 5			
8	Midterm Exam				
9	Internet and Computer Networks	Chapter 6			
10	Second Law of Thermodynamics	Chapter 6			
11	Database Concepts	Chapter 7			
12	Computer Security	Chapter 7			
13	Soft Computing Methodologies	Chapter 7			
14	Computer Ethics and organized crime	Chapter 8			
15	Software Engineering	Chapter 8			
16	Final Exam				

Textbook(s)/References/Materials:

Invitation to Computer Science G.Michael Schneider & Judith Gersting, 5th Ed, 2012

https://goo.gl/TJiTE4

Computer Science An Overview J. Glenn Brookshear, Addison-Wesley; 11th Ed, 2012

https://goo.gl/TJiTE4

Assessment				
Studies	Number	Contribution margin (%)		
Continuity	10	80		
Lab				
Application				
Field Study				
Course-Specific Internship (if any)				
Quizzes / Studio / Critical	6	60		
Homework				
Presentation				
Projects				
Report				
Seminar				
Midterm Exams / Midterm Jury				
General Exam / Final Jury	1	40		
	Total	100		
Success Grade Contribution of Semester Studies				
Success Grade Contribution of End of Term				
	Total	100		

Relationship Between Course Learning Outcomes and Program Competencies						
Nu	Learning Outcomes		Contribution Level			
			2	3	4	5
1	An ability to apply knowledge of science, mathematics, and				x	
	engineering.				^	
2	An ability to design energy systems, components, or processes to meet					x
	industrial needs.					^
3	An ability to work with multi-disciplinary teams.			Х		
4	An ability to identify, formulate, and solve engineering problems.				Х	
5	Take responsibility to solve unpredictable and complex problems					
5	encountered in applications as an individual and as a member of a team				Х	
6	plan and manage activities in teamwork				Х	
7	An ability to use the techniques, skills, and modern engineering tools					
/	necessary for engineering practice.				Х	
8	Can do research on interdisciplinary fields.			Х		

Activities	Number	Duration (Hours)	Total Workload	
Course hours (Including the exam week: 16 x total course	16	3	48	
hours)				
Laboratory				
Application				
Course-Specific Internship				
Field Study				
Study Time Out of Class	14	2	28	
Presentation / Seminar Preparation				
Projects				
Reports				
Homeworks	5	6	30	
Quizzes / Studio Review	6	2	12	
Preparation Time for Midterm Exams / Midterm Jury	2	15	30	
Preparation Period for the Final Exam / General Jury	1	15	15	
Total Workload				