

OSTIM TECHNICAL UNIVERSITY FACULTY OF ENGINEERING Department of Mechanical Engineering

COURSE SYLLABUS 2020-2021

Instructors:Prof. Dr. Yunus Çengel, <u>yunus.cengel@ostimteknik.edu.tr</u>Prof. Dr. Demiral AKBAR <u>demiral.akbar@ostimteknik.edu.tr</u>Assistant:Mehmetcan Türk <u>mehmetcan.turk@ostimteknik.edu.tr</u>

MS Teams Link:

https://teams.microsoft.com/l/meetupjoin/19%3aada8f26074c3456da8811759ff20ec66%40thread.tacv2/1602071938736?context=%7b%22Tid%2 2%3a%223045aa6c-0097-4a07-b6fb-f76517621c19%22%2c%22Oid%22%3a%2259db7b85-3b38-4e39-9a01-853667aa9bbf%22%7d

THERMODYNAMICS I MEC 205

Course Name	Course Code	Period	Hours	Application	Laboratory	Credit	ECTS
THERMODYNAMICS I	MEC 205	1	3	0	0	3	4

Language of Instruction	English
Course Status	Compulsory
Course Level	Bachelor
Learning and Teaching Techniques of the	Lecture, Discussion, Question/Answer, Short Quizzes,
Course	Assignments
Day and time of lectures	Wednesday, 15:00-16:45 Lecture
	Wednesday, 17:00-17:45 Problem solving
	Note: Students will not be admitted to the virtual
	classroom if they are late for more than 5 minutes.

Course Objective

The objective of this course is to gain a general understanding of energy, energy interactions and energy conversion processes, and to analyze and solve related real world engineering problems by applying the 1st and 2nd laws of thermodynamics.

Learning Outcomes

- 1. Learning the basic concepts of thermodynamics and the properties of substances using property tables or property relations.
- 2. Understanding the different forms of energy, energy interactions by heat and work transfer, and the 1st law of thermodynamics.
- 3. Solving real world engineering problems related to energy by applying the 1st law thermodynamics to closed and open systems like piston-cylinder devices, turbines, heat exchangers, and charging/discharging processes.
- 4. Understanding the 2nd law of thermodynamics and quantifying the performance of heat engines, heat pumps and refrigerators, reversible and irreversible processes, and

second-law efficiency

- 5. Defining entropy, developing entropy change relations, and deriving the increase of entropy principle,
- 6. Performing 2nd law analysis of engineering processes by quantifying entropy generation.
- 7. Analyzing some basic thermodynamics cycles like the Otto, Diesel, Brayton cycles for power production and the vapor compression refrigeration cycle for cooling applications.

Course Outline

Basic concepts and definitions, properties of a pure substance, equations of state, work and heat interactions, first law of thermodynamics, internal energy and enthalpy, second law of thermodynamics, entropy, reversible and irreversible processes, thermodynamic analysis of processes, third law of thermodynamics.

Weekly Topics and Releated Preparation Studies					
Weeks	Topics	Preparation Studies			
1	Introduction and Basic Concept	Chapter 1			
2	Energy and General Energy Analysis	Chapter 2			
3	Energy and General Energy Analysis Quiz #1 Chapter 2 Energy and General Energy Analysis	Chapter 2			
4	Properties of Pure Substances	Chapter 3			
5	First Law for Closed Systems Quiz #2 Chapter 4 First Law for Closed Systems	Chapter 4			
6	First Law for Closed Systems	Chapter 4			
7	First Law for Control Volumes Quiz #3 Chapter 5 First Law for Control Volumes	Chapter 5			
8	First Law for Control Volumes	Chapter 5			

9	Second Law of Thermodynamics Quiz #4 Chapter 6 Second Law of Thermodynamics	Chapter 6
10	Second Law of Thermodynamics	Chapter 6
11	Entropy Quiz #5 Chapter 7 Entropy	Chapter 7
12	Entropy	Chapter 7
13	Entropy Quiz #6 Chapter 7 Entropy	Chapter 7
14	Exergy	Chapter 8
15	Exergy	Chapter 8
16	Final Exam	

Textbook/Supplementary Materials:

The following textbook as eBook is mandatory, and must be purchased by each student. All quizzes and the final exam will be open book:

Thermodynamics: An Engineering Approach, 9th ed in SI Units Yunus A. Çengel, Michael A. Boles, M. Kanoğlu, McGraw-Hill Education. Purchase the code from (it is 185 TL): <u>http://www.caglayan.com/urundetay/634782/KOD-Thermodynamics-SI-9e-Cengel-OZU1447077701#sthash.HcfO1buP.dpbs</u>

Click the following link and enter the code that you purchased to access the eBook: <u>https://connect.mheducation.com/class/y-cengel-fall-2020</u>

(Students can also purchase the eBook and the print book or just the print book; but they are more expensive. The recommended eBook is the most economical).

Note: The lectures will be recorded and the students will have free access to all recorded lectures.

Assessment					
Studies	Number	Percentage (%)			
Attendance (Required)		Minimum 80%			
Lab		Minimum 80%			
Application					
Field Study					
Course-Specific Internship (if any)					
Grading:		% Grade:			
Quizzes	6	50%			
Homeworks & Projects		10%			
Presentation					

Report		
Midterm Exams / Midterm Jury		
Final Exam	1	40%
Total		100%

Relationship Between Course Learning Outcomes and Program Competencies							
N	Learning Outcomes		Contribution Level				
NU			2	З	4	5	
1	An ability to apply knowledge of science, mathematics, and				v		
	engineering.				X		
2	An ability to design energy systems, components, or processes to						
2	meet industrial needs.		^				
3	An ability to work with multi-disciplinary teams.		Х				
4	An ability to identify, formulate, and solve engineering problems.				Х		
F	Take responsibility to solve unpredictable and complex problems				v		
Э	encountered in applications.				^		
6	plan and manage activities in teamwork		Х				
7	An ability to use the techniques, skills, and modern engineering tools				v		
	necessary for engineering practice.				X		
8	Can do research on interdisciplinary fields.		Х				

ECTS / Workload Table					
Activities	Number	Duration (Hours)	Total Workload		
Course hours (Including the exam week: 16 x total course hours)	16	3	48		
Laboratory					
Application					
Course-Specific Internship					
Field Study					
Study Time Out of Class	14	4	56		
Presentation / Seminar Preparation					
Projects					
Reports					
Homeworks	5	6	30		
Quizzes / Studio Review	6	2	12		
Preparation Time for Midterm Exams / Midterm Jury	2	15	30		
Preparation Period for the Final Exam / General Jury	1	15	15		
Total Workload					

Links of some video content: Chapter 02

Chapter 02 <u>Internal Energy i</u> <u>Internal Energy ii</u> <u>Internal Energy iii</u> <u>Heat vs. Temperature</u>

Chapter 03 <u>Heating a Pure Substance</u> <u>How Does a Steam Turbine Work</u>

Chapter 04 Heating a Pure Substance

Chapter 05 Enthalpy and Flow of Work Throttle Mixing Chambers

Chapter 06 <u>Reversible vs. Irreversible Processes</u> <u>Sources of Irreversibilities</u> <u>Carnot Engine</u> <u>Quality of Energy</u>

Chapter 07 Entropy i Entropy ii Entropy Balance and Generation Compressor Work and Isentropic Efficiencies Entropy Balance and Generation

Chapter 08 Exergy and Control Volumes with Steam