

OSTIM TECHNICAL UNIVERSITY FACULTY OF ENGINEERING

COURSE SYLLABUS FORM 2021-2022

Instructor: Dr. Birce Nil Uzay, <u>bircenil.uzay@ostimteknik.edu.tr</u>

MEC 305 Fluid Mechanics								
Course Name	Course Code	Period	Hours	Application	Laboratory	Credit	edit ECTS	
FLUID MECHANICS	MEC 305	1	3	0	0	4	5	

Language of Instruction	English
Course Status	Compulsory
Course Level	Bachelor
Learning and Teaching Techniques of the Course	Lecture, Discussion, Question Answer, Practice

Course Objective

To give the ability of developing fluid mechanics equations in integral and differential forms to students and to build the understanding of basic fluid-solid interactions.

Learning Outcomes

A successful student of this course,

- 1. Has knowledge about the basic fluid properties and the fundamental concepts of fluid mechanics.
- 2. Can derive and apply the fundamental equation of fluid statics and determine the hydrostatic force acting on immersed surfaces.
- 3. Can derive and apply the conservation equations of mass, momentum, energy and angular momentum in integral form.
- 4. Can analyze incompressible flow in pipes and closed conduits.

Course Outline

Introduction fundamental concepts and fluid properties. Description and classification of fluid motion. Fluid statics. Buoyancy and stability. Concepts of system and control volume. Derivation and application of flow equations in integral and differential forms. Laminar and turbulent flows in pipes and ducts, major and minor losses. Turbomachinery.

Weekly Topics and Related Preparation Studies				
Weeks	Topics	Preparation Studies		
1	Fundamental Concepts			
2	Fluid Statics			
3	Integral Equations of Fluid Mechanics			
4	Integral Equations of Fluid Mechanics			
5	Differential Equations of Fluid Mechanics			
6	Differential Equations of Fluid Mechanics			
7	Differential Equations of Fluid Mechanics			
8	Incompressible Inviscid Flow			
9	Incompressible Inviscid Flow			
10	Internal and External Incompressible Viscous FLow			
11	Internal and External Incompressible Viscous FLow			
12	Internal and External Incompressible Viscous FLow			
13	Fluid Machinery			
14	Fluid Machinery			

Textbook(s)/References/Materials:

Fox, R. W., McDonald, A. T., & Mitchell, J. W. (2020). Fox and McDonald's introduction to fluid mechanics. John Wiley & Sons.

Assessment				
Studies	Number	Contribution margin (%)		
Attendance	14	10		
Lab				
Application				
Field Study				
Course-Specific Internship (if any)				
Quizzes / Studio / Critical 2		20		
Homework				
Presentation				
Projects				
Report				
Seminar				
Midterm Exams / Midterm Jury	1	30		
General Exam / Final Jury	1	40		
	Total	100		
Success Grade Contribution of Semester Studies	60			
Success Grade Contribution of End of Term		40		
	Total	100		

Relationship Between Course Learning Outcomes and Program Competencies							
#			Contribution Level				
#	Learning Outcomes	1	2	3	4	5	
1	An ability to apply knowledge of science, mathematics, and engineering.					x	
2	An ability to design static systems, components, or processes to meet industrial needs.					x	
3	An ability to work with multi-disciplinary teams.					x	
4	An ability to identify, formulate, and solve engineering problems.					x	
5	Take responsibility to solve unpredictable and complex problems encountered in applications as an individual and as a member of a team			x			
6	Plan and manage activities in teamwork			х			
7	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.				x		
8	Can do research on interdisciplinary fields.			х			

ECTS / Workload Table					
Activities		Duration (Hours)	Total Workloa d		
Course hours (Including the exam week: 16 x total course hours)	16	3	48		
Laboratory					
Application					
Course-Specific Internship					
Field Study					
Study Time Out of Class	14	2	28		
Presentation / Seminar Preparation					
Projects					
Reports					
Homeworks					
Quizzes / Studio Review	5	2	10		
Preparation Time for Midterm Exams / Midterm Jury	1	15	15		
Preparation Period for the Final Exam / General Jury	1	15	15		
Total Workload			116		